Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; 30(6): e3571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38374800

RESUMO

The self-assembly in aqueous solution of three Fmoc-amino acids with hydrophobic (aliphatic or aromatic, alanine or phenylalanine) or hydrophilic cationic residues (arginine) is compared. The critical aggregation concentrations were obtained using intrinsic fluorescence or fluorescence probe measurements, and conformation was probed using circular dichroism spectroscopy. Self-assembled nanostructures were imaged using cryo-transmission electron microscopy and small-angle X-ray scattering (SAXS). Fmoc-Ala is found to form remarkable structures comprising extended fibril-like objects nucleating from spherical cores. In contrast, Fmoc-Arg self-assembles into plate-like crystals. Fmoc-Phe forms extended structures, in a mixture of straight and twisted fibrils coexisting with nanotapes. Spontaneous flow alignment of solutions of Fmoc-Phe assemblies is observed by SAXS. The cytocompatibility of the three Fmoc-amino acids was also compared via MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] mitochondrial activity assays. All three Fmoc-amino acids are cytocompatible with L929 fibroblasts at low concentration, and Fmoc-Arg shows cell viability up to comparatively high concentration (0.63 mM).


Assuntos
Aminoácidos , Fluorenos , Interações Hidrofóbicas e Hidrofílicas , Fluorenos/química , Aminoácidos/química , Animais , Camundongos , Sobrevivência Celular/efeitos dos fármacos
2.
Biomacromolecules ; 25(2): 1205-1213, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38204421

RESUMO

The conformation and self-assembly of two pairs of model lipidated tripeptides in aqueous solution are probed using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). The palmitoylated lipopeptides comprise C16-YKK or C16-WKK (with two l-lysine residues) or their respective derivatives containing d-lysine (k), i.e., C16-Ykk and C16-Wkk. All four molecules self-assemble into spherical micelles which show structure factor effects in SAXS profiles due to intermicellar packing in aqueous solution. Consistent with micellar structures, the tripeptides in the coronas have a largely unordered conformation, as probed using spectroscopic methods. The molecules are found to have good cytocompatibility with fibroblasts at sufficiently low concentrations, although some loss of cell viability is noted at the highest concentrations examined (above the critical aggregation concentration of the lipopeptides, determined from fluorescence dye probe measurements). Preliminary tests also showed antimicrobial activity against both Gram-negative and Gram-positive bacteria.


Assuntos
Anti-Infecciosos , Lipopeptídeos , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Lisina , Espalhamento a Baixo Ângulo , Difração de Raios X , Anti-Infecciosos/farmacologia , Micelas
3.
Biomacromolecules ; 24(11): 5403-5413, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37914531

RESUMO

There has been considerable interest in peptides in which the Fmoc (9-fluorenylmethoxycarbonyl) protecting group is retained at the N-terminus, since this bulky aromatic group can drive self-assembly, and Fmoc-peptides are biocompatible and have applications in cell culture biomaterials. Recently, analogues of new amino acids with 2,7-disulfo-9-fluorenylmethoxycarbonyl (Smoc) protecting groups have been developed for water-based peptide synthesis. Here, we report on the self-assembly and biocompatibility of Smoc-Ala, Smoc-Phe and Smoc-Arg as examples of Smoc conjugates to aliphatic, aromatic, and charged amino acids, respectively. Self-assembly occurs at concentrations above the critical aggregation concentration (CAC). Cryo-TEM imaging and SAXS reveal the presence of nanosheet, nanoribbon or nanotube structures, and spectroscopic methods (ThT fluorescence circular dichroism and FTIR) show the presence of ß-sheet secondary structure, although Smoc-Ala solutions contain significant unaggregated monomer content. Smoc shows self-fluorescence, which was used to determine CAC values of the Smoc-amino acids from fluorescence assays. Smoc fluorescence was also exploited in confocal microscopy imaging with fibroblast cells, which revealed its uptake into the cytoplasm. The biocompatibility of these Smoc-amino acids was found to be excellent with zero cytotoxicity (in fact increased metabolism) to fibroblasts at low concentration.


Assuntos
Aminoácidos , Água , Aminoácidos/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Peptídeos/química
4.
Soft Matter ; 19(42): 8264-8273, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869972

RESUMO

Self-assembled supramolecular hydrogels offer great potential as biomaterials and drug delivery systems. Specifically, peptide-based multicomponent hydrogels are promising materials due to their advantage that their mechanical and physical properties can be tuned to enhance their functionalities and broaden their applications. Herein, we report two-component assembly and formation of hydrogels containing inexpensive complementary anionic, BUVV-OH (A), and cationic, KFFC12 (B), peptide amphiphiles. Individually, neither of these components formed a hydrogel, while mixtures with compositions 1 : 1, 1 : 2, and 2 : 1 (molar ratio) as A : B show hydrogel formation (Milli-Q water, at pH = 6.79). These hydrogels displayed a good shear-thinning behaviour with different mechanical stabilities and nano-fibrous network structures. The 1 : 1 hydrogel shows good cell viability for human embryonic kidney (HEK-293) cells and CHO cells indicating its non-cytotoxicity. The biocompatible, thixotropic 1 : 1 hydrogel with a nanofiber network structure shows the highest mechanical strength with a storage modulus of 3.4 × 103 Pa. The hydrogel is able to encapsulate drugs including antibiotics amoxicillin and rifampicin, and anticancer drug doxorubicin, and it exhibits sustainable release of 76%, 70%, and 81% respectively in vitro after 3 days. The other two mixtures (composition 1 : 2 and 2 : 1) are unable to form a hydrogel when they are loaded with these drugs. Interestingly, it is noticed that with an increase in concentration, the mechanical strength of a 1 : 1 hydrogel is significantly enhanced, showing potential that may act as a scaffold for tissue engineering. The two-component gel offers tunable mechanical properties, thixotropy, injectability, and biocompatibility and has great potential as a scaffold for sustained drug release and tissue engineering.


Assuntos
Hidrogéis , Peptídeos , Animais , Cricetinae , Humanos , Hidrogéis/química , Liberação Controlada de Fármacos , Cricetulus , Células HEK293
5.
Chembiochem ; 24(19): e202300472, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37529857

RESUMO

Cyclodextrins are saccharide ring molecules which act as host cavities that can encapsulate small guest molecules or thread polymer chains. We investigate the influence of alpha-cyclodextrin (αCD) on the aqueous solution self-assembly of a peptide-polymer conjugate YYKLVFF-PEG3K previously studied by our group [Castelletto et al., Polym. Chem., 2010, 1, 453-459]. This conjugate comprises a designed amyloid-forming peptide YYKLVFF that contains the KLVFF sequence from Amyloid ß peptide, Aß16-20, along with two aromatic tyrosine residues to enhance hydrophobicity, as well as polyethylene glycol PEG with molar mass 3 kg mol-1 . The conjugate self-assembles into ß-sheet fibrils in aqueous solution. Here we show that complexation with αCD instead generates free-floating nanosheets in aqueous solution (with a ß-sheet structure). The nanosheets comprise a bilayer with a hydrophobic peptide core and highly swollen PEG outer layers. The transition from fibrils to nanosheets is driven by an increase in the number of αCD molecules threaded on the PEG chains, as determined by 1 H NMR spectroscopy. These findings point to the use of cyclodextrin additives as a powerful means to tune the solution self-assembly in peptide-polymer conjugates and potentially other polymer/biomolecular hybrids.

6.
Adv Colloid Interface Sci ; 318: 102959, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37473606

RESUMO

The use of small-angle scattering (SAS) in the study of the self-assembly of peptides and peptide conjugates (lipopeptides, polymer-peptide conjugates and others) is reviewed, highlighting selected research that illustrates different methods and analysis techniques. Both small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) are considered along with examples that exploit their unique capabilities. For SAXS, this includes the ability to perform rapid measurements enabling high throughput or fast kinetic studies and measurements under dilute conditions. For SANS, contrast variation using H2O/D2O mixtures enables the study of peptides interacting with lipids and TR-SANS (time-resolved SANS) studies of exchange kinetics and/or peptide-induced structural changes. Examples are provided of studies measuring form factors of different self-assembled structures (micelles, fibrils, nanotapes, nanotubes etc) as well as structure factors from ordered phases (lyotropic mesophases), peptide gels and hybrid materials such as membranes formed by mixing peptides with polysaccharides or peptide/liposome mixtures. SAXS/WAXS (WAXS: wide-angle x-ray scattering) on peptides and peptide hybrids is also discussed, and the review concludes with a perspective on potential future directions for research in the field.


Assuntos
Nanoestruturas , Peptídeos , Espalhamento a Baixo Ângulo , Cinética , Difração de Raios X , Peptídeos/química , Nanoestruturas/química
7.
Langmuir ; 39(24): 8516-8522, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37289534

RESUMO

Lipopolysaccharides (LPSs) based on lipid A produced by bacteria are of interest due to their bioactivity in stimulating immune responses, as are simpler synthetic components or analogues. Here, the self-assembly in water of two monodisperse lipid A derivatives based on simplified bacterial LPS structures is examined and compared to that of a native Escherichia coli LPS using small-angle X-ray scattering and cryogenic transmission electron microscopy. The critical aggregation concentration is obtained from fluorescence probe experiments, and conformation is probed using circular dichroism spectroscopy. The E. coli LPS is found to form wormlike micelles, whereas the synthetic analogues bearing six lipid chains and with four or two saccharide head groups (Kdo2-lipid A and monophosphoryl lipid A) self-assemble into nanosheets or vesicles, respectively. These observations are rationalized by considering the surfactant packing parameter.


Assuntos
Lipídeo A , Lipopolissacarídeos , Lipopolissacarídeos/química , Escherichia coli/química , Glicosilação , Água/química , Micelas
8.
Soft Matter ; 19(26): 4869-4879, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37334565

RESUMO

Bradykinin (BK) is a peptide hormone that plays a crucial role in blood pressure control, regulates inflammation in the human body, and has recently been implicated in the pathophysiology of COVID-19. In this study, we report a strategy for fabricating highly ordered 1D nanostructures of BK using DNA fragments as a template for self-assembly. We have combined synchrotron small-angle X-ray scattering and high-resolution microscopy to provide insights into the nanoscale structure of BK-DNA complexes, unveiling the formation of ordered nanofibrils. Fluorescence assays hint that BK is more efficient at displacing minor-groove binders in comparison with base-intercalant dyes, thus, suggesting that interaction with DNA strands is mediated by electrostatic attraction between cationic groups at BK and the high negative electron density of minor-grooves. Our data also revealed an intriguing finding that BK-DNA complexes can induce a limited uptake of nucleotides by HEK-293t cells, which is a feature that has not been previously reported for BK. Moreover, we observed that the complexes retained the native bioactivity of BK, including the ability to modulate Ca2+ response into endothelial HUVEC cells. Overall, the findings presented here demonstrate a promising strategy for the fabrication of fibrillar structures of BK using DNA as a template, which keep bioactivity features of the native peptide and may have implications in the development of nanotherapeutics for hypertension and related disorders.


Assuntos
Bradicinina , COVID-19 , Humanos , Bradicinina/química , Bradicinina/farmacologia , Peptídeos , Transdução de Sinais , Células Endoteliais
9.
Soft Matter ; 19(25): 4686-4696, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37313785

RESUMO

Short and ultra-short peptides have recently emerged as suitable building blocks for the fabrication of self-assembled innovative materials. Peptide aggregation is strictly related to the amino acids composing the sequence and their capability to establish intermolecular interactions. Additional structural and functional properties can also be achieved by peptide derivatization (e.g. with polymeric moieties, alkyl chains or other organic molecules). For instance, peptide amphiphiles (PAs), containing one or more alkyl tails on the backbone, have a propensity to form highly ordered nanostructures like nanotapes, twisted helices, nanotubes and cylindrical nanostructures. Further lateral interactions among peptides can also promote hydrogelation. Here we report the synthesis and the aggregation behaviour of four PAs containing cationic tetra- or hexa-peptides (C19-VAGK, C19-K1, C19-K2 and C19-K3) derivatized with a nonadecanoic alkyl chain. In their acetylated (Ac-) or fluorenylated (Fmoc-) versions, these peptides previously demonstrated the ability to form biocompatible hydrogels potentially suitable as extracellular matrices for tissue engineering or diagnostic MRI applications. In the micromolar range, PAs self-assemble in aqueous solution into nanotapes, or small clusters, resulting in high biocompatibility on HaCat cells up to 72 hours of incubation. Moreover, C19-VAGK also forms a gel at a concentration of 5 wt%.


Assuntos
Nanoestruturas , Nanotubos , Peptídeos/química , Nanoestruturas/química , Estrutura Secundária de Proteína , Cátions
10.
Gels ; 9(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37367135

RESUMO

Self-assembled peptide-based hydrogels are archetypical nanostructured materials with a plethora of foreseeable applications in nanomedicine and as biomaterials. N-protected di- and tri-peptides are effective minimalist (molecular) hydrogelators. Independent variation of the capping group, peptide sequence and side chain modifications allows a wide chemical space to be explored and hydrogel properties to be tuned. In this work, we report the synthesis of a focused library of dehydrodipeptides N-protected with 1-naphthoyl and 2-naphthylacetyl groups. The 2-naphthylacetyl group was extensively reported for preparation of peptide-based self-assembled hydrogels, whereas the 1-naphthaloyl group was largely overlooked, owing presumably to the lack of a methylene linker between the naphthalene aromatic ring and the peptide backbone. Interestingly, dehydrodipeptides N-capped with the 1-naphthyl moiety afford stronger gels, at lower concentrations, than the 2-naphthylacetyl-capped dehydrodipeptides. Fluorescence and circular dichroism spectroscopy showed that the self-assembly of the dehydrodipeptides is driven by intermolecular aromatic π-π stacking interactions. Molecular dynamics simulations revealed that the 1-naphthoyl group allows higher order aromatic π-π stacking of the peptide molecules than the 2-naphthylacetyl group, together with hydrogen bonding of the peptide scaffold. The nanostructure of the gel networks was studied by TEM and STEM microscopy and was found to correlate well with the elasticity of the gels. This study contributes to understanding the interplay between peptide and capping group structure on the formation of self-assembled low-molecular-weight peptide hydrogels. Moreover, the results presented here add the 1-naphthoyl group to the palette of capping groups available for the preparation of efficacious low-molecular-weight peptide-based hydrogels.

11.
Langmuir ; 39(21): 7307-7316, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37192174

RESUMO

A histidine-based amphiphilic peptide (P) has been found to form an injectable transparent hydrogel in phosphate buffer solution over a pH range from 7.0 to 8.5 with an inherent antibacterial property. It also formed a hydrogel in water at pH = 6.7. The peptide self-assembles into a nanofibrillar network structure which is characterized by high-resolution transmission electron microscopy, field-emission scanning electron microscopy, atomic force microscopy, small-angle X-ray scattering, Fourier-transform infrared spectroscopy, and wide-angle powder X-ray diffraction. The hydrogel exhibits efficient antibacterial activity against both Gram-positive bacteria Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli). The minimum inhibitory concentration of the hydrogel ranges from 20 to 100 µg/mL. The hydrogel is capable of encapsulation of the drugs naproxen (a non-steroidal anti-inflammatory drug), amoxicillin (an antibiotic), and doxorubicin, (an anticancer drug), but, selectively and sustainably, the gel releases naproxen, 84% being released in 84 h and amoxicillin was released more or less in same manner with that of the naproxen. The hydrogel is biocompatible with HEK 293T cells as well as NIH (mouse fibroblast cell line) cells and thus has potential as a potent antibacterial and drug releasing agent. Another remarkable feature of this hydrogel is its magnification property like a convex lens.


Assuntos
Histidina , Staphylococcus aureus , Animais , Camundongos , Amoxicilina , Antibacterianos/química , Antibacterianos/farmacologia , Liberação Controlada de Fármacos , Escherichia coli , Hidrogéis/farmacologia , Hidrogéis/química , Naproxeno , Peptídeos
12.
Soft Matter ; 19(18): 3337-3347, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37096363

RESUMO

The Mpemba effect and its inverse can be understood as a result of nonequilibrium thermodynamics. In polymers, changes of state are generally non-equilibrium processes. However, the Mpemba effect has been rarely reported in the crystallization of polymers. In the melt, polybutene-1 (PB-1) has the lowest critical cooling rate in polyolefins and tends to maintain its original structure and properties with thermal history. A nascent PB-1 sample was prepared by using metallocene catalysis at low temperature, and the crystallization behavior and crystalline structure of the PB-1 were characterized by DSC and WAXS. Experimentally, a clear Mpemba effect is observed not only in the crystallization of the nascent PB-1 melt in form II but also in form I obtained from the nascent PB-1 at low melting temperature. It is proposed that this is due to the differences in the chain conformational entropy in the lattice which influence conformational relaxation times. The entropy and the relaxation time can be predicted using the Adam-Gibbs equations, whereas non-equilibrium thermodynamics is required to describe the crystallization with the Mpemba effect.

13.
ACS Appl Bio Mater ; 6(2): 384-409, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36735801

RESUMO

The self-assembly and structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents are reviewed with a particular focus on bioactivity. Terminal moieties include Fmoc [fluorenylmethyloxycarbonyl], naphthalene, pyrene, naproxen, diimides of naphthalene or pyrene, and others. These provide a driving force for self-assembly due to π-stacking and hydrophobic interactions, in addition to the hydrogen bonding, electrostatic, and other forces between short peptides. The balance of these interactions leads to a propensity to self-assembly, even for conjugates to single amino acids. The hybrid molecules often form hydrogels built from a network of ß-sheet fibrils. The properties of these as biomaterials to support cell culture, or in the development of molecules that can assemble in cells (in response to cellular enzymes, or otherwise) with a range of fascinating bioactivities such as anticancer or antimicrobial activity, are highlighted. In addition, applications of hydrogels as slow-release drug delivery systems and in catalysis and other applications are discussed. The aromatic nature of the substituents also provides a diversity of interesting optoelectronic properties that have been demonstrated in the literature, and an overview of this is also provided. Also discussed are coassembly and enzyme-instructed self-assembly which enable precise tuning and (stimulus-responsive) functionalization of peptide nanostructures.


Assuntos
Nanoestruturas , Peptídeos , Peptídeos/farmacologia , Peptídeos/química , Hidrogéis/química , Aminoácidos/química , Naftalenos
14.
Biomacromolecules ; 24(1): 213-224, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36520063

RESUMO

The conformation and self-assembly of four lipopeptides, peptide amphiphiles comprising peptides conjugated to lipid chains, in aqueous solution have been examined. The peptide sequence in all four lipopeptides contains the integrin cell adhesion RGDS motif, and the cytocompatibility of the lipopeptides is also analyzed. Lipopeptides have either tetradecyl (C14, myristyl) or hexadecyl (C16, palmitoyl) lipid chains and peptide sequence WGGRGDS or GGGRGDS, that is, with either a tryptophan-containing WGG or triglycine GGG tripeptide spacer between the bioactive peptide motif and the alkyl chain. All four lipopeptides self-assemble above a critical aggregation concentration (CAC), determined through several comparative methods using circular dichroism (CD) and fluorescence. Spectroscopic methods [CD and Fourier transform infrared (FTIR) spectroscopy] show the presence of ß-sheet structures, consistent with the extended nanotape, helical ribbon, and nanotube structures observed by cryogenic transmission electron microscopy (cryo-TEM). The high-quality cryo-TEM images clearly show the coexistence of helically twisted ribbon and nanotube structures for C14-WGGRGDS, which highlight the mechanism of nanotube formation by the closure of the ribbons. Small-angle X-ray scattering shows that the nanotapes comprise highly interdigitated peptide bilayers, which are also present in the walls of the nanotubes. Hydrogel formation was observed at sufficiently high concentrations or could be induced by a heat/cool protocol at lower concentrations. Birefringence due to nematic phase formation was observed for several of the lipopeptides, along with spontaneous flow alignment of the lyotropic liquid crystal structure in capillaries. Cell viability assays were performed using both L929 fibroblasts and C2C12 myoblasts to examine the potential uses of the lipopeptides in tissue engineering, with a specific focus on application to cultured (lab-grown) meat, based on myoblast cytocompatibility. Indeed, significantly higher cytocompatibility of myoblasts was observed for all four lipopeptides compared to that for fibroblasts, in particular at a lipopeptide concentration below the CAC. Cytocompatibility could also be improved using hydrogels as cell supports for fibroblasts or myoblasts. Our work highlights that precision control of peptide sequences using bulky aromatic residues within "linker sequences" along with alkyl chain selection can be used to tune the self-assembled nanostructure. In addition, the RGDS-based lipopeptides show promise as materials for tissue engineering, especially those of muscle precursor cells.


Assuntos
Lipopeptídeos , Nanoestruturas , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Adesão Celular , Sequência de Aminoácidos , Mioblastos , Dicroísmo Circular
15.
ACS Omega ; 7(50): 46843-46848, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570178

RESUMO

Analogues of benzene-1,3,5-tricarboxamide bearing combinations of different alkyl chains (dodecyl to octadecyl) and ester-linked PEG (polyethylene glycol) chains are shown to self-assemble into either micelles or nanotapes in aqueous solution, depending on the architecture (number of alkyl vs PEG chains). The cytotoxicity to cells is selectively greater for breast cancer cells than fibroblast controls in a dose-dependent manner. The compounds show strong stability, retaining their self-assembled structures at low pH (relevant to acidic tumor conditions) and in buffer and cell culture media.

16.
Nanoscale Adv ; 4(17): 3592-3599, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36134354

RESUMO

The large-scale use of glyphosate pesticides in food production has attracted attention due to environmental damage and toxicity risks. Several regulatory authorities have established safe limits or concentrations of these pesticides in water and various food products consumed daily. The irreversible inhibition of acetylcholinesterase (AChE) activity is one of the strategies used for pesticide detection. Herein, we found that lipopeptide sequences can act as biomimetic microenvironments of AChE, showing higher catalytic activities than natural enzymes in an aqueous solution, based on IC50 values. These biomolecules contain in the hydrophilic part the amino acids l-proline (P), l-arginine (R), l-tryptophan (W), and l-glycine (G), covalently linked to a hydrophobic part formed by one or two long aliphatic chains. The obtained materials are referred to as compounds 1 and 2, respectively. According to fluorescence assays, 2 is more hydrophobic than 1. The circular dichroism (CD) data present a significant difference in the molar ellipticity values, likely related to distinct conformations assumed by the proline residue in the lipopeptide supramolecular structure in solution. The morphological aspect was further characterized using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM), which showed that compounds 1 and 2 self-assembly into cylindrical and planar core-shell structures, respectively. The mimetic AchE behaviour of lipopeptides was confirmed by Ellman's hydrolysis reaction, where the proline residue in the peptides act as a nucleophilic scavenger of organophosphate pesticides. Moreover, the isothermal titration calorimetry (ITC) experiments revealed that host-guest interactions in both systems were dominated by enthalpically-driven thermodynamics. UV-vis kinetic experiments were performed to assess the inhibition of the lipopeptide catalytic activity and the IC50 values were obtained, and we found that the detection limit correlated with the increase in hydrophobicity of the lipopeptides, implying the micellization process is more favorable.

17.
Soft Matter ; 18(37): 7201-7216, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36098333

RESUMO

Nanoscale self-assembly of peptide constructs represents a promising means to present bioactive motifs to develop new functional materials. Here, we present a series of peptide amphiphiles which form hydrogels based on ß-sheet nanofibril networks, several of which have very promising anti-microbial and anti-parasitic activities, in particular against multiple strains of Leishmania including drug-resistant ones. Aromatic amino acid based amphiphilic supramolecular gelators C14-Phe-CONH-(CH2)n-NH2 (n = 6 for P1 and n = 2 for P3) and C14-Trp-CONH-(CH2)n-NH2 (n = 6 for P2 and n = 2 for P4) have been synthesized and characterized, and their self-assembly and gelation behaviour have been investigated in the presence of ultrapure water (P1, P2, and P4) or 2% DMSO(v/v) in ultrapure water (P3). The rheological, morphological and structural properties of the gels have been comprehensively examined. The amphiphilic gelators (P1 and P3) were found to be active against both Gram-positive bacteria B. subtilis and Gram-negative bacteria E. coli and P. aeruginosa. Interestingly, amphiphiles P1 and P3 containing an L-phenylalanine residue show both antibacterial and antiparasitic activities. Herein, we report that synthetic amphiphiles with an amino acid residue exhibit a potent anti-protozoan activity and are cytotoxic towards a wide array of protozoal parasites, which includes Indian varieties of Leishmania donovani and also kill resistant parasitic strains including BHU-575, MILR and CPTR cells. These gelators are highly cytotoxic to promastigotes of Leishmania and trigger apoptotic-like events inside the parasite. The mechanism of killing the parasite is shown and these gelators are non-cytotoxic to host macrophage cells indicating the potential use of these gels as therapeutic agents against multiple forms of leishmaniasis in the near future.


Assuntos
Aminoácidos , Anti-Infecciosos , Antibacterianos/química , Antibacterianos/farmacologia , Antiparasitários/farmacologia , Dimetil Sulfóxido , Escherichia coli , Hidrogéis/química , Hidrogéis/farmacologia , Peptídeos/química , Fenilalanina , Pseudomonas aeruginosa , Água
18.
Langmuir ; 38(11): 3434-3445, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35274959

RESUMO

Peptide-based hydrogels have attracted much attention due to their extraordinary applications in biomedicine and offer an excellent mimic for the 3D microenvironment of the extracellular matrix. These hydrated matrices comprise fibrous networks held together by a delicate balance of intermolecular forces. Here, we investigate the hydrogelation behavior of a designed decapeptide containing a tetraleucine self-assembling backbone and fibronectin-related tripeptides near both ends of the strand. We have observed that this synthetic peptide can produce hydrogel matrices entrapping >99% wt/vol % water. Ultrastructural analyses combining atomic force microscopy, small-angle neutron scattering, and X-ray diffraction revealed that amyloid-like fibrils form cross-linked networks endowed with remarkable thermal stability, the structure of which is not disrupted up to temperatures >80 °C. We also examined the interaction of peptide hydrogels with either NIH3T3 mouse fibroblasts or HeLa cells and discovered that the matrices sustain cell viability and induce morphogenesis into grape-like cell spheroids. The results presented here show that this decapeptide is a remarkable building block to prepare highly stable scaffolds simultaneously endowed with high water retention capacity and the ability to instruct cell growth into tumor-like spheroids even in noncarcinoma lineages.


Assuntos
Hidrogéis , Nanoestruturas , Amiloide , Animais , Células HeLa , Humanos , Hidrogéis/química , Camundongos , Morfogênese , Células NIH 3T3 , Nanoestruturas/toxicidade , Peptídeos/química , Água
19.
ACS Appl Bio Mater ; 5(3): 905-944, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35195008

RESUMO

This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.


Assuntos
Desenvolvimento de Vacinas , Vacinas de Subunidades Antigênicas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos/imunologia , Vacinas Anticâncer/administração & dosagem , Controle de Doenças Transmissíveis , Humanos , Neoplasias/terapia , Peptídeos/imunologia
20.
Soft Matter ; 18(4): 711-721, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35014650

RESUMO

Lamellar structures are formed in a variety of soft materials including lipids, surfactants, block polymers, clays, colloids, semicrystalline polymers and others. Lamellar phases are characterized by scattering patterns containing pseudo-Bragg peaks from the layer ordering. However, fluctuations of the lamellae give rise to diffuse scattering in addition. This diffuse scattering can provide valuable information on the elastic properties of lamellae which control their fluctuations. A number of models to account for this are described in this Tutorial Review, along with examples from the literature. In addition, diffuse scattering from in-plane fluctuations or structures such as perforations or patterned nanoparticles is considered. This type of diffuse scattering can give unique information on the nature of, and positional (and bond orientational) ordering within, correlated structures within the lamellar plane. Anisotropic diffuse scattering features from thermotropic smectic phases is also briefly discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...